Applied Modelling and Simulation of Technological Systems

P. Borne and S.G. Tzafestas (Editors) ;

Elsevier Science Publishers B.V. (North-Holland) : : 41
© IMACS, 1987

LINEAR STATE ESTIMATION IN THE PRESENCE OF SUDDEN SYSTEM CHANGES-AN EXPERT

SYSTEM
ANASTASIOS POULIEZOS : G:S. STAVRAKAKIS
POLYTECHNIC OF CRETE c/o Prof. S.TZAFESTAS

Eleft. Venizelou 34
CHANIA-CRETE-GREECE

Control and Automation Group
Electrical Engineering Dept.
NATIONAL TECHNICAL UNIVERSITY
ZOGRAFOU-ATHENS 15773, GREECE

ABSTRACT

The class of stochastic linear systems that are subject to additive changes
of unknown magnitude in the state variables or in the system parameters, oc-
curing at unknown times, is considered. At first, a classification of the

changes which may occur in a system is given. Following this the performance

of the discrete Kalman-Bucy filter when the system is subjected to sudden
changes modelled by any additive function, is evaluated. The results con-
cerning the effect of the various kinds of faults on the Kalman-Bucy filter
innovations are summarised in two useful tables.

1. INTRODUCTION

In applying the discrete linear Kalman
filter to a real system, the model para-
meter matrices, the noise variances and
the filter initialisations must be spe-
cified a priori. For such problems the
Kalman-Bucy filter performs extremely
well. However, if the Kalman filter is
operating with correctly identified
parameters, then a sudden change in the
real system will introduce errors in the
model parameters, which unless taken into
account, will produce degradation of
filter performance, i.e. an increase in
the state estimate error variance or a
bias in the state estimate. A sysfem
change is any change of known source

1n the assumed system parameters, which
occurs at known time with known magnitu-
de. This sudden change causes a degra-
dation in the performance of the state
estimation procedure.

If the source of the system change or
the time that the change occurs or the
magnitude of the change are unknown then
the system change is defined as a system
pault.

The design of a fault monitoring scheme
consists of various functions to be per-
formed in the event of a fault.

The first stage, in order to proceed with
the fault monitoring functions is to mo-
del the various faults and to derive the
system model, when the system is subje-
cted to any of these faults. In this pa-
per we consider the various fault models
and the effect of faults on the proper-
ties of the residual sequence.

In the case of 4ysftem change these re-
sults can be used to reorganize the sy-
stem, which entails reinitialisation of
model and filter parameters. The reader
is refered to [1] [2 ‘ [3] for the pro-
blem of detection of jumps in linear sy-
stems. ’

2. MODELS OF ADDITIVE FAULTS OR CHANGES

The general form of a fault model will
be assummed additive , i.e. given a sy-
stem parameter p(k) and a fault modelled
by h(k,8,v) where k is the sample time,
6 is the time of fault occurrence and v
is the size of the fault, then the value
of the parameter after a fault will be
given by

Pnew=Pold+h(kre’v)

where v e(Vy,V )

is the size of the fault constrained below by
Vy and above by V , and 6e (0,«)

is the time of fault occurrence which
takes a finite integer value if a fault
occurs and is infinite otherwise,

Faults may be classified into three
types:

type 1: jump, Zype 1I :step, type TII :
ramp and higher order. Type I faults may
modelled by the term

vé where §

k,8 =1 ;k=8kronecker

B e dalta)
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If a fault has not occurred 8 is infini-
te, -hence Sk xfO. This model may used for
7

instantaneous faults of one time unit du-
ration. Type II faults may be modelled by
the term 2

Vcrk,e where ok’e=1; k>8

=0; k<®©
This model may be used for faults of con-
stant size which have a permanent effect

on the system. Type III faults may be mo-
delled by the term h(v,k)ok 6

where h(v,k) is a polynomial in k; v may
used to represent faults of changing ma-
‘gnitude. A ramp could then be represen-
ted, as (a+kv)cxk,e

Such models introduce further complexity
to the fault monitoring scheme. However,
ramps could be approximated by a series
of steps. This approach will depend on
the slope of the ramp, which should not
be too steep for such approximation to
be valid.

3. MODELLING OF SYSTEMS SUBJECT TO TYPE
II FAULTS

consider the following discrete-time dy-
namical system:

x (k+1)=¢ (k+1,k)x (k) +w (k) (1)
y (k) =H(k)x(k)+v(k) (2)

where x(k)aRn is the state with Gaussian
initial condition x(0) of mean &, and co-
variance P.. In addition yeRP is the ob-
servation, and {w(k)}, {v(k)} are inde-
pendent, zero mean, white Gaussian sequ-
ences with E (w(k)w (k)T)=Q (k) and
E(v(k)v(k)T)=R(k).

Faults of type I will have a temporary
effect on the system performance since
the Kalman filter will resettle at its
pre-fault condition. Assume g=lt-1. TEithe
filter was started at time k+1, the effect
of the initial error at time 6 would di-
minish, under stability assumptions, as
successive measurements are processed.
However, the time taken for the Kalman
filter to settle will in general be grea-
ter than the estimation delay time t_ and
“therefore in applications where accuracy
in state estimation is vital at every
time, a fault monitoring scheme should

be employed for faults of this type 3
The following models are proposed in the
case of faults in the state equation:

a. Step bdas in plant state

x (k+1)=¢ (k+1,k)x(k)+tw(k)+v_o (3)
x k1.8
Step changes in the mean of the plant

noise sequence w(k) may also be modelled
in this manner.

b. Step change 4n ¢ mathix

- x (k+1)= (¢ (k+1,k) +Ado ) x (k) +w (k)

k+1,8 (4)
c. Additional plant noise.
x (k+1)=¢ (k+1,k)x (k) +w (k) +g K)oy 14 o

(5)
where r_(k) is conveniently defined as
a white gaussian random sequence, in-
dependent of x(0), w(i), vi(i) for all
i,k and of zero mean and unknown con-
stant variace S_. In the above cases
the observation®equation remains as in
(2) . The following models are proposed
in the case of faults in the measure-
ment equation:

d. Step bias in the measwrements

y(k):H(k)x(k)+v(k)+vak’e (8)

Step changes in the value of the measu-
rement noise sequence v (k) may also mo-
delled in this manner.

e. Step change 4in H matrix
y(k)=(H(k)+AHok e)x(k)+v(k)

§. Additional measurement noise
y(k)=H(k)x(k)+v(k)+2;y(k)okle (10)

where ¢ (k) is conveniently defined as
a gaussian sequence of zero mean and
unknown constant variance S indepen-—
dent of x(0), w(i), v(i) for‘all i,k.
The models developed here may be used
in situations where a fault may occur
in only one parameter at any given An-
stant.. Such faults may be called single
faults. The same approach can howver
be extended to the modelling of simu-
ltaneous occurrence of faults in more
than one parameter, termed multiple
faults.

(9)

4. EFFECT OF FAULTS ON KALMAN FILTER
RESIDUALS

The innovations sequence {y(k)} of the
discrete Kalman-Bucy filter is given
by the well known equation:

v (k)=y (k) -H (k) & (k/k-1) (11)

where %(k/k-1) is the optimum estimate
of x(k) based on the measurement seque-
nce: :

k= 1 e o

y =fvEi) o a=t vk (12)
The matrix p(k/k-1) is the variance of
the '‘estimation error x(k)=&(k/k-1);K(k
is the Kalman-Bucy filter gain. Given
the observability conditions, the true
system is observable through the mea-
surement sequence {y(k)} only.

The well known equations of the Kalman
Bucy filter [4] imply that knowing the
measurement residual sequence {y(k)} i
equivalent to knowing {y(k)} :
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It is shown in [4] that for a Kalman fil-
ter operating with correctly identified
parameters, the residual sequence {Y(k)}

k=1,2,... is gaussian with:
Yy (k)=E{vy (k) }=0 ; all k
C(k,m)= E(Y( Iy T(m) }=0; all km (12%
C(k, k)=E{y (k)v T (k) }=H (k) P (k/k=1) H (k) +
+R (k)

o4 hepatore follows that {y(k)} will con-
tain information of faults provided that
the faults are observable. The following
general theorem describes the effect of
additive faults on the innovation sequ-
ence of the discrete Kalman-Bucy filter.

4.1. Theorem

The state, measurement, filter state esti-

mate, inovations sequence and covariance
matrix for models represented by equati-
ons (1)-(2) which are subject to sudden

faults modelled by any additive function
may be expressed as:

x(k)=xo(k)+h e, 8, AP) (1-3)

Y(k)=Yo(k)+h (k, 6, AP) - (14)

Z(k/k) =R, ( k/k)+f (k, 9, 4P) (15)

Y (k) =Yo (k) +g (k, 6, AP) (16)

P(k/k)=Po(k/k)+Pf(k,e,AP) 7]
where, =

h_(k,98,AP) is the effect on state
x (k) o% a fault of size AP, which occu-
red at time 9, 2

hy(k,e,AP)‘is the corresponding ef-
fect on measurement y(k),

f(k,6,AP) is the effect on the state
estimate %(k/k)

g(k, 8,AP) is the effect on the in-
novations vy (k)

f(k,e,AP) is the effect on the co-

variance matrix P(k/k) and x,(k/k),
yo(k/k), % (k/k), Yo(k), Po(k/k) repre-
sent the values of the corresponding va-
riables that would be obtained if no
fault occurs.

Further, the recursions on h +h
Pf are given by:

Y,f,g and

g(k,8,AP)= y (k7 6, 8P) —H(K) ¢ (k k=1) £ (k=1,
6, 4P) (18)
f(k,0,0P)=K(k)g(k,6,AP)+¢(k,k-1)f(k-1,
Bi:8P) ;- k28 (19Y
P.(k,0,4P)=(h (k,8, AP)- (k, 8,4P))
(h, (k, 8, AB- f(k 8,4P)) T; k>8 (20)
g(k,e,AP)=f(k,e,Ap)=0;k<e (21)

The proof is given in Appendinx I.

The quantities hX

and hy depend on the

particular.fault but in view of (2) if

a fault occurs in a parameter of the

plant equation:

hx(k,e,AP)#O; modelled as in the previ-
ous section and

hy(k,e,AP)=H(k)hx(k,e,AP); k29

If a fault occurs in a parameter of the
measurement equation,

h (k,8,0P)=0; all k
hy (k,8,AR)#0; k28

If a fault does not occur, since ¢is in-
finite, h_ and h_ are identically zero.

Eguations™ (13)-(21) provide a model for

the evolution of the {x(k)J}{y®k) },{&(&x/K}
{y(x)} and {P(k/k)}.

4.2. Innovations modelling subject to
type II faults.

For type I faults we refer the reader
to [3]. For type II faults appropriate

hx and hy functions can be calculated

using the models deveioped in the pre-
vious section.

Corollary: Since the effects of faults

are additive, type II faults may be
thought of as a series of successive
type I faults. In this way, the effect
of a type II fault of size AP can be
found by considering the total effect
of successive type I faults of equal,
but unknown,) size AP.

a. Step bias 4in plant state
The effect of conescutive jumps starting
at time Bup to and inclunding time
k (k>8) will therefore be:
ga(k,e)vx+ga(k, 6+1)VX+.._+ga(k,k)vX
(klelv )=V (e)' k>€

=0 k<®
Applying the results of the previous
theorem the residual sequence may then

be written as:
k

Y(k)=vo(k)+ [ g S keLlv (i) k26

where, imi
g (k, 8)=H(k) (¢ (k,8)-¢ (k, k=1)£_(k=-10))
(k)

ak, 8K (k)g, (k,0)+¢(k, k- 1)f (k-1,8);
: kie (22)

Therefore,

g,(k,0)=f
b. Sztate change 4n ¢
Consider equation (4) when 6=k+1:
x(k+1)=(¢ (k+1,k) +A¢) x (k) +w (k)

=x, (k+1) +A¢x, (k)

At time k+2, the following equationshold:
x (k+2) = (¢ (k+2,k+1) +8¢) x (k+1) +w (k+1) .
=(¢(k+2,k+1)+40) (xo (k+1) +8dx, (k) ) +w (k+1)

a(k,8)=0; k<@
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=xq (k+2)+A0¢x, (k+1)+¢ (k+2 ,k+1) Apx, (k) +

+A0¢2x, (k)
It follows by inspection that the desi-
red expression for the effect of a step
change in ¢ is given by:

: k—sn=k=i
h (k,0,80)=F ] Cleti+n,i+q) aeTaex
. . n
i=8 g=0
g (i-1); k>6 (23)
1 0 =
where C%=— I ~ e =C2=17 0<g<n
M q!(n-q)!

In this case, the effect of a step change
cannot be written as the sum of effects
of successive jump changes.
- However, this problem can be examined if
someone defines: =

==

i30T cdo(5en,3+q) 4630x0 (5-1)
e (24)
Then, h_(k,0,4¢)= ;] h*(k,i,A¢) and the
X i=9 X

terms of the sum can be thought of as an
effect pf a jump fault.

The results of the previous theorem can
be then applied directly and the filter
residuals may be expressed as:

k
Y(k)=Yo (k)+-] gy (k,i,80) Adxo (i-1)
1=0
where gb,and fb are recursively computed
from:
n=k
gb(klllAq)):H(k) (

=i

Z’c%@(i+n,i+q)A¢q—
g=0

= (k, k=1) £ (k=1,1, 8¢))

£, 0k, 1,80)=K (k) g (K, 1,80)+0 (k,k=1)

i fb(k—1,i,AP); k2l (25)
gy, (ko i, 80)=ED (k,i,88)=0; k<1

It may be seen that in the case of a
step change in ¢, the unknown size of
the fault is nonlinearly related to the
additional terms g, .
In the cases of adgitional plant noise,
step change in H, step bias in measure-
ments and additional measurement noise
the cumulative property holds, so the
appropriate functions can be calculated
similarly to the case of a step bias
in-plant ‘state:.
In fact, it is easy to see that, in the
case of additional plant noise,

k
hx(k,e,CX)=ize¢(k)i?cx(i) (26)
in the case of step change in H,

hy(k’, B, 8H)=0Hxg(8); k=6

G0 + 270 £€27)
in the case of step bias in measurements
hy(kfe,vy)=vy(8) > 2k=0b B

=0 7 k#8 (28)

and in the case of additional measure-
ment noise,

h (k,6 = ] s=k=0
y( ' ,Cy) Ey( )

= 0 ; k#6
The results concerning the effect of
the various kinds of type II faults on
the form of the Kalman-Bucy filter
residuals are summarised in the Table
1 below.

TABLE 1.
bias additional noise change in transition or measurement
matrix
k : : k : ; k
y(k) = yo(k)+i§ega(k,1)yx(1) Y‘k) = yo(k)+i§egc(k,1)gx(1) y(k) = T°(k)+i£égb(k’l'A¢)A¢x°(l-1)
2 g9, are both calculated by : gb(k,i,A¢) is recursively computed
5 : fr ti 2
2| 9l,0) = B [6(k,0)-0(k,k-1)£(k-1,8)] e
£(k,0) = K(k)g(k,0)+6(k,k-1)f(k-1,8) ; k6
g(k,8) = f(k,8) =0 i k<t
¥ . e 3
(k) = v (k)+ T g4(k,1)v (1) | (k) = Yo(k)+iiegf(k,i)cy(i) v(k) = Yo(k)+~Eege(kii)AHx°(i)
= B = =i
a 941949y &Te all calculated from :
3]
g 9(k,8) = -H(k)e(k,k-1)f(k-1,8) i k=6
= :
= f(k,8) = K(k)g(k,8)+0(k,k-1)f(k-1,6) ; k=6
1]
g a(k,k) =1
=
g(kye) = f(k,e) =0 7 k<6
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5. EFFECT OF TYPE II FAULTS ON:THE JOINT
P.D.F OF THE INNOVATIONS

Having established the form of the inno-
vations sequence under faulty conditions,
their joint probability distribution
(JOINT P.D.F) will now be examined.

In normal operation, the statistical pro-
perties of the residuals are given by
(12—-*). When different cases of type II
fault occur, the residuals generated by
the Kalman filter evolve according to
TABLE 1. :

For every possible fault, it is necessa-
ry to establish which of.the statistical
properties of the residuals in normal o-
peration remain the same, and which are
subject to change.

Since the linear tructure of the Kalman
filter equations and state and measure-
ment models is not changed in the pre-
sence of an additive type fault, the re-
siduals remain a linear combinatiorn of
the gaussian measurement sequence ({y (k)}
and are therefore also gaussian. This
result means that the joint pdf of the
innovations will be completely chara-
cterised by its first and second moments.
To ease notational complexity the fol-
lowing definitions are made:

= T =
yIr® =[Y(j)TY(j+1)T...Y(k)T}eanf

=d.k ok 5k
i -
where n*=n(k-j+1) and

cj'kscovyj'ksg'&Yj'k_qjlk)(erk_;j/k)T]
eRn*Xn*
Using.these definitﬁops the pdf of the
gaussian vector y3Jr® is:
k)_ he
e

P(yl’ exp

1 j =3 j - j =7 .
{_ 'Z_(lek—Y]'k)T(C]’k) 1(Y]Ik_.YJlk)} (29)
The effect of the faults on the whiteness

property must be examined as well. If a
fault has not occured (29) becomes:

i,k ! 1
P(y’'")= 1T - ——5—€XpP
=3 (21) "2 {c(m,m)[ 72
- A
(=% (yo tm) T m,m) ™y, (m) }= w(5,%) (30)

Since E{y, (m)}=0 and ijk=diag[c(m,mﬂ 2

g 3R s Rk
a. Joint p.d.§ of nesdiduals in the event of
step bdas An plani state.

The mean of the residuals sequence in
this case is given as: -

k
elym)] =€ [yo )+ ] g, (k,1)V, ()]
=g

and since the residuals in normal ope-
ration +Yok) have zero mean and the se-
cond term in the expectation is non-
random,

k A
By~ [ g, (k, 1)V, =Y (k)

=0
Therefore the residual mean vector is:
sl T T
yg' .==b)0,...,(ga(9,8)vx) T
K ke  F '
(] 930080V |rezs (31)

The residual covariance matrix can be
calculated considering,

E [(y(k)—?(k)) (v (m) =¥ (m)) T
k =
But, y(k)-y(k)=vo(k)+ [ g_(k,i)V -
X iZe
L e

Hence,

cov [y k) ymT]=0 ; Kxrm
~C(k,k); k=m  (32)

This result implies that a step bias in
the plant state does not change the cor-
relation properties of the innovations
sequence. The joint p.d.f. of the re-
sidual sequence may be written as:

: 0 ’
P(yIrK) =3, 0-1) 1 ——— ]

i=6 (2m)"* |c@

o e

exp{-2 (v (1) =¥ (WF (1,1 "y (1) -F (1))}

(333

b, Joint p.d.f 04 nesdiduals <in the event
of a step change 4in ¢.

The mean of the residual sequence in
this case is given as:

k .
E Y(k) =E Yo (k)+ [ g (k,i,00¢)8¢x,(i-1)
-0
k :
= L gy (k,i,80)80E %o (i-1) (34)
i=6
Using: (1), g

E [x0 (1=1)] =6 (1-1,0)% (0)

Under system stability assumptions, in
system steady state, E x,(i) —0; all
i>>0. This result implies that-if Iy

remains bounded for all k, the mean va-
lue of the residual sequence in the e-
vent of a change in ¢ is zero, if the
fault occurs when the system has rea-
ched steady state. Under stability con-
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ditions for ¢(k+1,k)+4¢, see 4 , that
is if the change does not destabilize
the system, g, will remain bounded.Under
these circumstances the residual covari-
ance 1is =

cov [y (k) .y (E)] - [y ey T (m)]

~E [(vo (k)+ [ gy (3, 80) 8(i-1))
i=9

T T
(ro m+ ] gy (m,3, 800 doxa (3-1)1" |

3==0
or
T T
cov [Y(k),y(m)} —c(k,m)+ | E[w (k) %o (3-1)]
; - A
80gE (m,3,86)+ g, Uk, &, 86) B¢ [xo (1=1)
i=6
- T k m
Yo (m) ]+ E{ ] g, (k,1,00)80%0 (1=1)" ]
i=g i=8
xo (3-1) T 80" gy (m, 3, 80} (35)
Since yok) is independent of x,(i), i=

0,1,...k-1, assuming 0<<k<m without loss
of generality, the third sum in (35) va-
nish. The stochastic process x(k) has

" the following property, from (1):

cov{x(k)x(m)T}=¢(m,k){var x(k)l; m>k.
HEence, the second sum in (35) becomes:

o - P e
T E{yo (K)xo(3-1) "} 8¢ gy (m,3,4¢) ,Where
32K+

E{vo (K)xe (3=1)} =6 (3=1,k) *H*P (k /k-1)

The last sum is given by the expression:
m =
gy, (ks 8,4¢)A¢ [ E{xo (8=1)%, (3-1 RSV

3= e -

(m,3, 86)+g, (k, 0+1,80) 8¢ § E{x, (8)x, (=17}
j=e
A¢Tg§(m,j,A¢)+ ........... +gb(k,k,A¢>)A¢

m
T E{x, (k=1)x, (3-1) T 389" q] (m, 3, 8¢) -
J=6

c. Joint p.d.§ of residuals in the event of
additional plant nodise.

The expected value of vy (k) is zero in
this case, since both vy, (k) and gx(i)
are of zero mean.

A 3
cov { k) y(m)}=Clk,m+ § g_(k,i)_m1)Ts,
i=6
= A= min{k,m} (36)
Since,
. .T . . T .
55, )v)]-0; all 4,3, 5[5, (g, (7)]-0;

all iA-

and the gx(i) is independent of the vyq (i)

The residual covariance matrix is then
given by:

- Al l
Cg’ = J, where
8,k
F Cc W
-1 C(8, B+CL(8,6) CL(6+1,8)...... . (8,k)
CL(8+1,8)  C(6+1,8+1)4C (6+1,6+1).. ..
0,.k_ :
CC cc(e+1,k)
Lcé(e,k) : Clk/k)+C, (k k)
A T 1
and C.’c(i,j)=m£egc(i,m)gc(j,m)SX (38)

It can be seen that the residual sequ-
ence following an increase in the plant
noise is not stationary as well as not
white, since in general,cc(iﬁﬂ#Ct(iﬂnJﬁm
d. Joint p.d.4 of nesdiduals 4in the event
0k step bias «n the measurements.
The expected value and covariance of
the innovations sequence are found in
the same way as in the case of a step
bias in the state. Thus,
el =
e i
ek z[o,o...,(gd(e(e)vy)
= . - ; :
(P g tRAliv ) ey (39)
i=6 Y
Since the step bias is non-random the
correlation properties do not change,

cov [Y(k) ,Y(m)} =E [‘{o (k) Yo (m)T:l’—"—C(k,m) (40)

These results imply that joint pdf can

be written as a product of independent

random variables as in (33).

e. Joint p.d.§ of resdduals in the event of
_a step change 4in H.

Since the x¢ (i) are random and E is a

linear operator,

K
E[Y(k)] = 1 g_(k,i)8HE [xo (i)] (41)

L

=0
Hence, under steady state conditions,
E x¢(i) ==0, 4>20, Thus,

E[Y(k)]= 0

The covariance is calculated as,

==
T . : :
sHTg_(m,3)+ § g (e, 1) aHE [x, (1), (m) ]+
k- i-p ¢ rop, 42
) ge(k,i)Aon(i)-.z X, () "aH g  (m,3) }
i="g J==0

o m
E LY(k)Y(m)] ~C(k,m)+ § E [«{0 (k) x, (j)}T
- :
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The individual sums are of the same
form as the sums involved in the cova-
riance function of the residuals fol-
lowing a step change in ¢, so they can
be-calculated using the same considera-
tions.

§. Joint p.d.f of residuals Ln the event
0f additional measurement noise.

Since the Jy(i) have zero mean,

E [y (k)] =0 (43)
The covariance is given by: ;
%
T
cov b(k)Y(m)]C(k m+ ] gek, 1)gg (m, 1S,
(44)

where A=min{k,m}, since g is indepen-

dent of w(i) for alE &, g (1) is idepen—
dent of g for all 1#3 and g is

1ndependent of syili)s,

This results implies that an increase in
the measurement noise has the same quali-
tative effect on the joint pdf of the in-
novations sequence as the increase in
plant noise, i.e the residuals remain
zero mean but become correlated and non-
stationary.

6. SYMMARY OF RESULTS AND COMMENTS

The effects: of the.type II:faults are-
summarised in Table 2. As it can be seen
from Table 2, if the faults occur in
steady state, then they may be classi-
fied into two disjoint classes, as fol—
lows:

C1: {faults with effect of nonzero mean
-of residuals}

Cy: {faults with effect of correlated

residuals}
or, equivalently,
C,: {faults a, a4}
5t {faults b, c, e, f}
The no-fault class,
Cy: {no fault}

may also be added, so that the three
classes fully characterise any probable
condition of the system.

The results concerning the stationarity
property of the residuals, in steady
state following a fault are quite impor-
tant. This property, together with the
fact that the correlation decreases ex-
ponentially, ensures that time averages
are meaningful 5 . Thus, even under
faulty conditions, the sequence of resi-
dual values can be considered to be en-
semble values 'of the corresponding di-

stributions and hence on-line fault mo-
nitoring is possible.

A fourth class could also be included,
covering cases outside the main as-
sumptions of the problem. This would
include situations where a fault in the
transition coefficients occurs when the
system is in the transient state or si-
tuations in which|¢+A¢|>1, i.e. the
change in ¢ destabilises the system.The
common feature of the effect on the

_ innovations sequence of faults of this

class, is the introduction of bias as
well as correlation. Therefore, C3 may
be defined as:

Cy: {faults with effect of nonzero mean
and correlation}

or equivalently,
Cy: {(b or e in transient state) or
(destabilising b)}

TABLE 2: Effect of faults on innovati-
ons,in steady state conditions
of system and filter.

i | statio-
e independence narity
a. State bias no yes yes
b. Change in ¢ yes no
c. Additional = ™ e =0 o
plant noise ¥ 4
d. Measurement =
bias = =8 =
le. Change in H yes no |
f. Additional
measurement yes no no (yes) *
noiese
No fault yes yes yes

*In the case of additional noise, either in the
state or the measurements, the entries in pa-
pentheses denote the steady state

7. CONCLUSION

In this paper the innovations modelling
of the Kalman--Bucy discrete filter sub-
ject to various sudden changes, was de-
veloped. Although{y(k)} and {vy(k)} both
contain information of a fault, the use
of {y(k)} for fault monitoring is fun-
damentally more attractive in a scheme
based on statistical inference.

If no faults occur, the residuals gene-
rated by the system measurements can be
thought of as sample points from a nor-
mal probability distribution with zero
mean an variance C(k,k) given by (12-%)
If a fault occurs the system output and-
therefore the residual sequence will
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no longer be represented by the well
known Kalman-Bucy discrete filter algo-
rithm. .

The filter algorithm however, will still
operate on the assumed values and as a
consequence it will generate residuals
which do not belong to the assumed pro-
bability distribution.

By obtaining the probability distriba-
tion of the residuals generated by the
Kalman-Bucy filter after each type of
fault, fault detection and isolation can
be performed by testing which of the
possible probability distributions re-
present {vy(k)} .

The classification of Table2 makes thewhole
scheme appropriate for implementation

as an expert system.

APPENDIX I.
‘Proog of the Theorem: The proof will be
by induction. Suppose (13)-(17) hold
for time k. At k+1, ®{k+1/k+1), v(k+1)
are calculated by the ' Kalman filter as,
Y (k+1)=y (k+1)-H(k+1) ¢ (k+1,k)R (k/k)
~ya (1) +h,, (1, 8, AR) =H (k+) 0 (k+1 k)
{%o (k/k)+£f(k,6,4P)}
=Yo(k+1)+hy(k+1,e,AP)—H(k+1)¢(k+1,k)
£(k,0,AP) : (a.1)

and, .
K (k+1/k+1)=¢ (k+1/k) &k /k)+K (k+1) v (k+1)

=¢ (k+1/k){ &%, (k/k)+f (k,8,AP) }+
+K(k+1){yo(k+1)+hy(k+1,e,AP)—
-H(k+1) ¢ (k+1,k) £(k, 8,AP)}

= %o (k+1/k+1)+¢ (k+1,k) £(k,6,AP)
+K(k+1){hy(k+1,6,AP)—H(k+1)

¢ (k+1,k) £(k,08,AP)} (A.2)
where the subscript 0 denotes the value
of the parameter that is obtained if no
fault occurs. Equations (A.1%1), (A.2) may
be reweitten,

vy (k+1)= v, (k+1)+g (k+1, 0, AP)
F(k+1/k+1)= Ro (k+1 /k+1)+£ (k+1,6,AP)
where,

g(k+1,9,AP)=hy(k+1,e,AP)—H(k+1)¢(k+1,k)

f(k,06,AP)

£(k+1,8,AP)~¢ (k+1,k) £ (k, 8,AP) +K (k+1)
g(k+1,8,AP)

Therefore, equations (13)-(17) hold fc
time k+1.

At k=6, since the fault has not affe-
cted X (0=1/06-1)

v(8) =y (0)=H(6) ¢:.(:8, 6-1FX (0=1/8=1)_
=yo (8)+h, (8,0,4P) ~H(6) ¢(6,0-1).
(6-1/8-1)
=Yo (8)+h, (8, 6, AP)
and R(8/6)=¢(6,6-1)%(6-1/6-1)+K(0)(
=ﬁo(e/e)+x(e)hy(e,e,AP)

Hence,
Y (8)=Yo (0)+gi:8,0, AP}

%(6/6)= Ro(65/0)+£(6,6,AP)
where,

g8, 8, AP)= hy(e,e,AP)

F£0,8,4P)= KEB)g(6,0,4P)

This completes the proof.
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